Tiny House, Tiny Living, The Tiny Life.

Posts Tagged off grid

New Zealand Tiny House

In the winter of 2013 Brett Sutherland of Auckland, New Zealand set about to build a tiny house of his own design on a tandem-axle trailer right in the driveway of his parents home. Start to finish took just five months but with a bit of experience and  a lot of tenacity and dedication Sutherland built one of the most unique, space-saving, tiny house trailers visible on the web today.

Mobile Villa 1

Nicknamed the MV (Mobile Villa) by Sutherland himself the inspiration behind the build was really a practical one. As Brett explains to Bryce Langston in a recent interview, “The biggest thing I was trying to avoid was losing all my money as soon as I touched down and that’s what happens when you pay a rent.” Brett truly wanted an off-the-grid, self-contained home that would allow him to concentrate more on his art than making money. He wanted to do more in life than just survive economically.

At 161 sq.ft. the Mobile Villa cost just $10,185.00 USD to build and features a sitting area, a kitchen, an upstairs sleeping loft, and a small bathroom with shower.

MV layout

MVtoilet

The roof line of the MV is a two-tier shed roof which Sutherland admits was done for airflow purposes in the sleeping loft as the top tier features a crank-out, horizontal window. The slope of the roof also allows for generous rain catchment which further allows Sutherlands pursuits for total off-grid living. The lower tier supports Brett’s two solar panels which then further feed into his electric panel situated just above the toilet area and out of direct sight and hosting a 30-amp solar regulator, battery isolator switch, and switchboard.

Upon walking in the tiny house there is immediately a twin-size day bed to the right offering guests a place to lay their head when visiting as well as a couple of sitting chairs directly across the room for more social moments. Another interesting aspect of the house is the use of what looks like standard plywood with a semi-gloss finish rather than the pine tongue-and-groove more frequently seen in tiny houses. This technique has been used before in several inexpensive yet practical ways such as the Zen Cube Mobile Living Space.

MV Living RoomIt’s what is under the day bed that is perhaps the coolest element as it houses the Flexi Tank water storage bag which is connected directly to the downspout of the gutter on the lower roof tier and holds roughly 100 gallons.

MV Water StorageOther features of Sutherlands tiny house are typical of many tiny houses:

  • 12-volt water pump (which services the sink and shower)
  • Propane cook stove
  • 12-volt outlet(s)
  • Sawdust toilet

Since construction on Sutherland’s Mobile Villa ended he has moved it to a friend’s property in Bethells Beach in Auckland. With the ocean as his front yard, no shortage of palm trees as his neighbor, and plenty of room for friends and guests to come and enjoy a barbeque Sutherland and his MV are perfect testimony to the freedom, mobility, and consciousness that tiny living can bring!

MV Moving

Your Turn!

  • Can you see yourself living tiny at the oceanfront?

 

Via

 

Future Of Batteries

With many Tiny Houses wanting to live off the grid, many of us dream of all electric cars charged by green energy sources, we get frustrated when our devices only last a scant few hours.  What does all this have in common?  Batteries.  Technology has allowed us to do so many interesting things in today’s world, but batteries are still from the stone age, or so they seem.  They are inefficient, heave, expensive, and have a low mass/volume to power ratio.  I have said to friends many times, want to make millions, make a better battery.

Living off the grid is one of the biggest benefactors of improvements in batteries.  While solar cells aren’t quite there yet, they have made some big strides in making them cheaper and more efficient.   The point is, they are on there way.  The second component to a solar array is storing that energy to have on had at night or when you are in some heavy  usage.  Better batteries will allow us to do this.  Here is a good article from Good.

header-ev-batteries

For those who didn’t pay attention in class: Batteries are typically comprised of three main parts: a cathode (positive electrode), an anode (negative electrode), and an electrolyte (an ion-rich liquid that separates the electrodes). The movement of metal ions between the cathode and the anode through the electrolyte (and back) releases electrons, generating electricity

Lead-acid batteries, found in conventional automobiles, have a low ratio of energy to weight, which means it takes a lot of battery to provide just a little juice. Nickel-metal hydride batteries, the ones powering today’s hybrids like the Toyota Prius, are significantly lighter, but offer only a slight improvement in efficiency. Neither can compete with gasoline-fueled internal combustion.

Several technologies are competing to fuel the next generation of EVs. All of them, however, have serious weaknesses that researchers are still attempting to address. “People are betting on different horses at this point in time,” says Matt Keyser, a senior engineer in energy storage systems at the National Renewable Energy Laboratory in Golden, Colorado. “Which one is going to come out and win is anyone’s guess.”

Here’s a look at some of the technologies vying to corner the EV market:

Lithium-Ion

lithium-ion-smallThese batteries use lithium ions as the electrolyte. A battery pack made of these cells, while more powerful than lead-acid and nickel-metal hydride batteries, is still 10 times weaker than an internal combustion engine of the same weight. Versions of these batteries are already used in in both the Tesla Roadster and Chevy Volt, as well as many electronic devices, such as laptops and cell phones. The knock on current lithium ion technology: It dispenses its stored energy slowly, so acceleration may be slow, and the batteries take several hours to charge. Also, while lithium is plentiful, it’s not extensively mined, so it’s expensive to obtain. It may take up to 10 years for supply to catch up to projected demand.

Ultracapacitors

ultracapacitor-smallUltracapacitors charge quickly and dispense their charge speedily (curing the slow acceleration problem that plagues some electric cars). They also last much longer than batteries—they can be recharged over and over again, whereas batteries eventually will not recharge. That’s because ultracapacitors use electric fields, instead of slowly depleting chemicals, to get charges. They are already in use in short-run electric buses in Russia and garbage trucks in the United States. The downside: They only hold their charge for a limited time, so it’s unlikely that ultracapacitors will become a viable option for powering a car alone. “I think ultracapacitors are a technology that’s going to work with [battery] systems,” says Savinell. However, one Texas-based company called EEStor says it has solved the storage problem, claiming its ultracapacitors will enable a small car to travel 250 miles on a single charge that only takes five minutes to complete.

Fuel Cells

hydrogen-fuel-cell-2-smallLike batteries, fuel cells have cathodes and anodes and involve a chemical reaction, specifically making water and electrons (and thus electricity) by combining hydrogen with oxygen. The technology is simple enough, but the safety issues are the drag: The transport and onboard storage of highly explosive (remember the Hindenburg?) hydrogen gas could keep fuel cells from catching on. In addition, the catalysts needed to split hydrogen atoms into protons and electrons (like platinum, palladium, rhodium, nickel) are very expensive. “Fuel cells from a mobile standpoint are difficult,” says NREL’s Keyser. “Maybe in twenty five or thirty years down the road, we may be able to deal with all the storage issues, the transport issues, the infrastructure issues, the catalyst itself.” Seemingly agreeing with Keyser’s skepticism is the Obama administration, which cut $100 million from the federal hydrogen fuel cell program in 2009.

Redox Flow

vanadium-redox-flow-smallSimilar to fuel cells, redox flow batteries would require filling stations rather than plug-in capability. In this case, a charged electrolyte flows through the battery, producing electrons. After a while, the electrolyte loses its charge and needs to be pumped out and replaced. The electrolyte is typically made with vanadium, which is the 22nd most abundant element in the world. It’s also very safe. “If you were to spill this on the road and light a cigarette near it, it’s not going to go off like hydrogen,” says Keyser. “The big thing with [redox flow batteries] is: Are you going to get the energy density or power density that you need for the car itself?” Right now, even lithium ion cells are several times more powerful than redox flow cells. German researchers, however, claim they have a method to increase the distance redox flow batteries can power a car by four to five times, rendering them roughly equal to lithium ion batteries.

Metal Air

metal-air-battery-smallSavinell and Keyser both point to metal air batteries as the technology of the future. This battery uses the oxygen in the air as its cathode, which means it doesn’t need as much material and gets more energy for its weight. Depending on what material is used for the anode, metal air batteries could be anywhere from three times more powerful than lithium ion batteries of the same weight to as powerful as an internal combustion engine. IBM intends to bring these to market in five years for smaller electronics. “For lithium air, I think that’s more ten to fifteen years down the road [to power a car],” says Keyser. “We’re just starting to really look at that and understand all the benefits and the costs associated with lithium air batteries.” One major barrier remains: When the oxygen reacts with the electrolyte to form ions, it also creates a solid that can gunk up the air intake, blocking the battery’s function. Researchers are searching for an electrolyte that will produce the necessary ions but avoid the formation of this solid.